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comments are offered concerning possible effects of 
primary extinction and the magnitude of instrumental 
broadening is estimated. 

We are grateful to Dr J. R. Schneider for helpful 
correspondence and also to our colleagues, Drs S. L. 
Mair and S. W. Wilkins, for critical comment and dis- 
cussion. 
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Abstract 

Examination of the limiting relation of extinction and 
diffraction makes it clear that extinction is only zero, in 
an absolute sense, when diffracted power is identically 
zero. This latter condition is the proper operational 
identifier for the attainment of the kinematical limit and 
is valid irrespective of the state of perfection of the 
crystal medium. At the limit of zero diffracted power, 
the kinematical (single-scattering or first Born) approxi- 
mation is asymptotically exact so that experiment and 
theory become strictly compatible. Experimental 
structure-factor values which are free from extinction 
effects can therefore be derived in this limit. In practice, 
the advantages of this approach have to be gained by 
greater attention to data collection. Typically, the 
method involves (i) determination of integrated reflec- 
tivity at a series of levels of interaction (attained by 
controlled variation of a suitable physical parameter) 
and (ii) extrapolation of an appropriate function of 
the measurements to zero level of interaction as 
identified by zero diffracted power. Various possible 
procedures for effecting this approach are discussed 
here in general terms. The approach proposed here has 
advantages over the earlier prescription of the kine- 
matical limit [Bragg, Darwin & James (1926). Philos. 
Mag. 1, 897-922] based on the state of the crystal 
medium ('ideally imperfect'). It avoids any need for the 
necessarily approximate assumptions inherent in the 
Darwin-Zachariasen treatment of extinction. It also 
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avoids dealing with the complications arising from 
idiosyncratic or anisotropic extinction effects since 
it refers all cases to zero level of interaction. The 
kinematical limit, as defined here, is a universal limit. 

Introduction 

The conventional (Darwin-Zachariasen) approach to 
treating the problem of extinction in real crystals is 
deficient in a number of important respects, namely: 
(i) The equations involved are usually limited by the 
assumption of the Darwin energy-transfer equations 
(see Becker & Coppens, 1975). (ii) The theoretical 
models of the inner morphology of the crystal involve 
severe approximations which do not accord with 
experimental evidence (e.g. Lehmann & Schneider, 
1977; Lawrence & Mathieson, 1977). (iii) Invocation of 
calculated structure-factor values to assess the degree 
of extinction influences the final model of the electron- 
density distribution because extinction corrections and 
the electron-density distributions are highly correlated 
statistically. 

In view of these shortcomings, it is not surprising 
that a juridical comment has been made recently in 
relation to the conventional approach that 'there exists 
some as yet improperly accounted for source of error' 
(USA National Research Council, 1976). My view is 
that this residuum of error is, at least in part, due to 
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the deficiencies inherent in the conventional approach 
to the problem of extinction. 

To overcome such defects, an alternative and more 
fundamental approach to extinction is required. An 
important feature must be that it avoid any reliance 
on theoretical estimates of  structure-factor values in 
estimating the degree of extinction, or indeed on 
theoretical estimates of  the extinction corrections. To 
be soundly based in a physical sense, any such 
approach must deal, instead, only with experimentally 
measurable quantities (see Bridgman, 1936). 

Recent studies (Mathieson, 1976, 1977a,b; 
Lawrence & Mathieson, 1977) have indicated the 
possibility of a practical, operational approach of this 
type, based on the exact limiting relationship between 
the process of diffraction and its Doppelgi inger-  
extinction. This particular approach focuses attention 
on certain critical questions which have not previously 
been posed in an explicit manner in the study of 
extinction. These questions are: (a) What precisely does 
one mean by data which are free of extinction? (b) How 
would one attain such data? (c) How does one know, 
in an operational sense, that an extinction-free 
measurement has, indeed, been achieved? 

The present paper outlines an approach to answering 
these questions and explores some of its logical conse- 
quences for the problem of extinction. 

Definition of freedom from extinction 

The starting point for this analysis lies in a careful 
consideration of the process of the scattering of 
radiation, and of the level of interaction between the 
radiation and the crystal medium. Our concern here 
is essentially with the exact relationship between 
diffraction and extinction in the limit of zero diffracted 
power. 

Taking the most general view, the process of 
diffraction removes energy from an X-ray beam 
(Bragg, 1914, Fig. 10; Calvert, Killean & Mathieson, 
1976). This is the essential feature whatever the level of 
multiple (i.e. n-) scattering or the balance of coherent/ 
incoherent interaction.* Therefore, under diffraction 
conditions, just as the transmitted beam is extinguished 
(Darwin, 1914) so also is the diffracted beam (Darwin, 
1922; Bragg, Darwin & James, 1926). This is true, in 
an absolute sense, however weak the level of interaction 
of the diffraction process. In other words, any 
measurement with a finite diffracted intensity is 
afflicted by extinction (statement 1). In fact, diffraction 

* In respect of n-scattering, the components progressively 
decrease in magnitude with increase in n, either coherently (wave 
flow - 'primary extinction') or incoherently (energy flow = 
'secondary extinction') or any in-between situation involving partial 
coherence. 

and extinction are indissolubly linked and are simply 
two aspects of the process whereby X-radiation 
interacts with matter. We may therefore conclude, in 
principle, that extinction is only identically zero when 
diffracted power is zero (statement 2). This then 
constitutes a proper definition of  zero extinction or 
freedom from extinction. It establishes a precisely 
defined operational condition which constitutes an 
exact identifier for the condition of  freedom from 
extinction. 

One could re-phrase statement 2 as 'extinction is 
only identically zero when the level of interaction is 
zero' - but this form has no direct operational signifi- 
cance. 

The kinematical approximation and the kinematical 
limit 

Let us examine the consequences of our definition of 
'freedom from extinction' for the validity of the kine- 
matical approximation. 

The usually expressed attitude to the kinematical 
(i.e. single-scattering or first Born) approximation is 
that it is, by its very nature, an approximate theory 
in respect of measurement of diffracted intensity and 
the resultant derived structure-factor values. As Kato 
(1974) has observed in this context: 'Extinction effects 
are unavoidable as "theoretical impurities"'. Our 
contention in the present paper is that Kato's 
statement is not necessarily universally true but that, 
under certain circumstances, while the 'impurities' 
remain, their effects can be 'refined out' and the 
theory becomes exact. 

The kinematical approximation, as specified in 
International Tables for  X-ray Crystallography 
(1959), requires that 'the intensity of the X-ray beam 
passing through a crystal is not affected by the process 
of diffraction' and that this 'is only true if the crystal 
is composed of small parts that scatter independently'. 
It is clear that these conditions cannot be strictly 
satisfied where there is extraction (and return) of 
energy relative to the transmitted beam, by any 
diffraction process (including single scattering) 
leading to finite diffracted intensity. 

These difficulties with the kinematical approximation 
both disappear in the (kinematical) limit as the 
diffracted power tends to zero; at the limit the following 
conditions hold: (a) The total energy of the system is 
manifestly conserved. (b) The usual relationship 
between integrated intensity and structure factor 
becomes exact. (c) As shown previously (Hirsch & 
Ramachandran, 1950; Mathieson, 1977b), the limit 
attained is independent of the state of the crystal, 
whether near ideally perfect, near ideally imperfect or in 
any intermediate condition. 

In other words, the zero-power diffraction condition 
is where the kinematical theory is exact and the derived 
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formulae are exact. There also, theory and experiment 
are in exact accord so that the resultant data are no 
longer specimen-specific but are simply structure- 
specific. 

The zero-power diffraction condition therefore 
allows a precise and operationally determinate pre- 
scription for  attaining the kinematical limit. Since it is 
independent of the state of the crystal, we can refer to 
it, under this prescription, as a universal limit. 

Attainment of the extinction-free limit 

Having established an operational definition of freedom 
from extinction and shown that it accords with an 
exact relationship between theory and experiment 
within the kinematical theory, let us explore its signifi- 
cance for the determination of extinction-free data. 

It is evident from statement 1 that, in a strict sense, 
extinction-free data cannot be attained by any single 
measurement of  finite diffracted intensity. Clearly also, 
the only single measurement which would be physically 
significant would involve null intensity. So the only way 
in which extinction-free data can be obtained is from 
a series of  measurements involving a controlled range 
of  a suitable physical variable by taking a limit 
identified by the diffracted power going to zero. Either 
the integrated intensity (integrated diffracted power), p, 
may approach a finite (non-zero) limit or, in those 
cases where p --, 0, the ratio of p to some appropriately 
chosen function of the physical variable approaches 
such a limit. 

The experimental realization of the null-intensity 
(kinematical) limit 

The practical realization of such procedures may be 
divided into two classes. One is of more general 
applicability, being dependent on the functional form 
of Q, the reflectivity per unit volume, which enters 
into the various experiment-specific intensity relation- 
ships. The second is of more specific applicability, 
being dependent on the particular experimental 
arrangement. 

In the following, some particular experimental 
configurations for achieving zero extinction are 
discussed in general terms. 

General class 

From this relationship it is evident that for any given 
value of IFI there are two variables which can be 
controlled so as to make Q,~ approach zero, namely 
cos 2 20 and 2. While they are not completely inde- 
pendent, variation of cos 2 20 about zero involves only 
limited variation of 2 for a given reflexion plane, so that 
it may be treated as a case distinct from that of 2 --, 0. 

The case for variation of cos 2 20 has been examined 
(Mathieson, 1977a), and with a synchrotron source is 
eminently feasible. It is possibly the most generally 
applicable technique in that it can be used for both 
reflexion and transmission methods with large crystals 
and also for diffraction from small crystals. 

The case of variation of 2 is not clear-cut. For 
reflexion from extended-face crystals, the evidence of 
Wooster & MacDonald (1948) suggests that con- 
vergence of dynamical and kinematical limits lies 
towards longer wavelengths while for transmission and 
for small crystals the limit would be 2 = 0. Although 
general comments on this possibility of extrapolation 
have appeared, e.g. Weiss (1966), evidence of any 
practical exploration of its potential is limited.* In the 
process of data collection and reduction for an 
international intensity project, Grant, Killean, Law- 
rence, Senol & Sharma (1972) explored the possibility 
of extrapolation against 2. The work of Maier-Leibnitz 
and Schneider (see Schneider, 1974) used radiation of 
such short wavelengths (?-rays) that there was initially 
a tendency to believe that extinction was vanishingly 
small. However, in accord with statement 1 above, 
since they were measuring finite diffracted power, 
extinction was still present and, in fact, proved to be 
appreciable. Their derivation of structure-factor values 
from such data required the assumption that the 

* Bragg & Azaroff (1962) have made measurements on a Si 
single crystal at five wavelengths. Their purpose, however, was to 
establish a measure of the crystallite disorientation and not of the 
structure factor. From these results (their Fig. 4), it is clear that the 
wavelength range was not large enough to define the curves 
sufficiently near to the point of zero interaction. 

0-(3 

"" 1.13 

O 0  

The formula for Q,o the n-polarization component, 
is given by 

, [Ne2, ,21 3cos22O. 
Q" s in20  mc z 

(1) 

(a) (b) 

Fig. 1. (a) The relationship between po and Q,~ for different levels 
of interaction, due (say) to different structure-factor values. 
(b) The corresponding relationships for the normalized intensity, 
PolPk. 
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corrections made for extinction were exact. That this 
may not have been so has been suggested by 
Mackenzie & Mathieson (1979), who offer an alter- 
native procedure for attaining nominally extinction-free 
structure-factor values from the p ray  data for f(220) of 
Cu from Schneider (1976, 1977). This procedure is, 
however, less powerful than those involving the zero- 
power criterion. 

To illustrate this general class, Fig. l(a) shows 
schematically the possible variation of po with Q~ as the 
latter goes to zero, for a number of specific levels of 
interaction (cf. Fig. 1 in Bacon, 1951). Fig. l (b)shows 
the corresponding variation of the normalized intensity, 

po/pk. 

S p e c i f i c  c l a s s e s  

(i) E x t e n d e d - f a c e  (Bragg)  ref lexion 

With this technique, an additional experimental 
variable which can be introduced is asymmetry. In a 
formal sense, this technique also introduces the 
absorption coefficient, /~, but this factor is not to be 
regarded as a variable which is controllable and 
capable of independent extrapolation to an appropriate 
limit (see Wooster & MacDonald, 1948). The case of 
asymmetric reflexion in relation to single crystals has 
been explored by Mathieson (1976, 1977b) while the 
case for the perfect crystal has been subjected to a full 
theoretical treatment in a study by Wilkins (1978). So 
far as powder specimens are concerned, the practical 
possibilities are at present speculative, but there seems 
to be no obvious reason why the technique of 
asymmetric reflexion with properly prepared specimens 
should not prove useful. This aspect is under investi- 
gation. 

The appropriate schematic diagrams to illustrate this 
situation are given in Fig. 2. The vertical coordinate in 
Fig. 2(a) is the measured integrated intensity, while that 
in (b) has been corrected for asymmetry and nor- 
malized (see Mathieson, 1977b). Fig. 2(a) and (b) 
constitutes an elaboration of Fig 6(a) and (b) in 
Mathieson (1977b). 

measurements fell on the curve fitted to the majority 
of measurements. So they, and also Darwin (1922), 
were understandably troubled by this evidence of idio- 
syncratic behaviour. Recently Lawrence & Mathieson 
(1977) have modified the procedure to use only one 
specimen and have shown that the variation is indeed 
not exceptional but is natural and to be expected 
because of the different beam paths through a specimen 
in which the crystallite distribution is non-uniform. As 
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(ii) T r a n s m i s s i o n  (Laue )  ref lexion 

In this case, the additional variable is path length. 
This technique was originated by Bragg, James & 
Bosanquet (1921a,b). They prepared a series of plates 
of different thicknesses, t, measured the transmitted 
integrated intensities, Po, plotted ln(po/t) versus  t and 
extrapolated to t -- 0. This was a key experiment. 
Unfortunately, apart from studies by Sakisaka (1927) 
and Bragg & West (1928), this technique has been 
largely ignored [see, however, G6ttlicher (1968) and 
G6ttlicher & Kieselbach (1976)]. At the time, it was 
noted by Bragg, James & Bosanquet that not all 

Fig. 2. (a) A schematic representation of the integrated intensity, 
Po, against the level of interaction (Qk or Pk) with variation 
of asymmetry, ft. The symmetrical reflexion position is 
represented by the section with fl = 0. The dotted curve in this 
section corresponds to a variation of Po (for the symmetrical 
reflexion) with change of level of interaction. The dashed curves 
represent the variation with asymmetry at given levels of 
interaction. For fl = +1, Po goes to zero while at fl = -1, 
the specific intensity (per unit surface area of the crystal) goes 
to zero (see Mathieson, 1976, 1977b). (b) The corresponding 
representation for the intensity normalized and corrected for 
asymmetry, Po(1 -- fl)-l/pl c Dotted and dashed curves here 
correspond to those in (a). Here the 'universal' kinematical limit 
is represented by the surface ukls which can be attained at 
uk, kl and ls by appropriate extrapolation. 
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the interaction level drops, the intensity variation con- 
tracts and vanishes completely at the limit of zero inter- 
action. 

The work of Lawrence & Mathieson (1977) was 
exploratory and clearly established that, for relatively 
high interaction levels and hence non-linear log plots 
[contrast with the results of G6ttlicher (1968) and 
G6ttlicher & Kieselbach (1976)], it would be necessary 
to approach the t = 0 limit (in the case of LiF and 
M o K a  radiation) more closely than ~1 mm, the 
minimum dimension in the experiments of Lawrence & 
Mathieson (1977). This aspect is also receiving further 
attention. 

For this case, the appropriate schematic is given 
in Fig. 3, which shows the form of variation of po/t 
with r 

For the transmission case asymmetry is also a 
possible variable, but here its use would start from a 
fixed minimum-extinction situation and approach a 
maximum-extinction condition asymptotically. Hence it 
would appear to be of little value in approaching an 
extinction-free limit. 

(iii) Smal l  crystals 

For such specimens, the additional variable is the 
volume of the crystal, V. (Note that, at zero interaction, 
the detailed shape of the crystal is not relevant.) 
Cochran (1953) used measurements with a number of 
crystals to show the trend with diminishing volume. 
His procedure assumed that the data from the smallest 
crystal for the 10 strongest reflexions were correct. 
Later Tulinsky, Worthington & Pignatoro (1959) used 
the device of extrapolation to zero volume of the 
derived F o values. The technique of extrapolation of 
po/V does not appear to have been investigated 
although it should be noted that Robinson (1933), in 
attempting to establish an absolute value for one order 
of anthracene with 18 crystals, compared corrected 
intensity with crystal volume over an extended range. 

0.0 

\ 
0 level of interaction 

Fig. 3. Schematic representation of the ratio of integrated intensity, 
Po, to path traversed, t, versus t, for various levels of interaction. 

The appropriate schematic for this case is similar to 
that for the Laue case. 

Commentary 

At this late stage in the history of the subject, a re- 
examination of the exact meanings of freedom from 
extinction and the kinematical limit may appear to be 
an academic exercise. That it is, in fact, of practical 
concern is evident when one recognizes that the 
procedures for measuring physically significant 
structure-factor values are dictated by the definitions 
adopted. Indeed the possibility of achieving improved 
accuracy (not merely precision*) in the establishment 
of structure-factor values is very much linked to the 
operational capability of the definition chosen. 

In the past, there has been, as we will show, a lack 
of precision in the relevant definition(s) which has given 
to the search for absolute (or extinction-free) 
structure-factor values a measure of vagueness or 
uncertainty which has been screened from full recog- 
nition by the traditional reliance upon theoretical 
estimates of structure-factor values. A serious conse- 
quence of the deficiency in definition has been a lack 
of precision in the interpretation of experimental results, 
especially in those cases where it has been assumed that 
the specimen effectively accords with the classical 
definition, namely in the case of powdered specimens 
or very small crystals. 

Consider the definition of the 'upper limit' by Bragg, 
Darwin & James (1926). To avoid misunderstanding, 
let us quote the original statement from p. 906 of that 
reference: 'In this paper, the ideally imperfect crystal 
is regarded as the standard, and the integrated intensity 
is supposed to be lowered below this standard by two 
phenomena which are called primary and secondary 
extinction...'. 

This definition of the 'upper limit' has tended to be 
identified in the literature with the 'kinematical limit'. 
For reasons which will become obvious, we will not 
assume that they are identical and will retain their 
separate identity in the following. 

The definition of the 'upper limit' contains certain 
serious defects. For one, it invokes the phenomenon 
of extinction as part of the definition. The defects are 
more evident, however, when one seeks to visualize 
setting up appropriate experiments to attain the limit. 
These defects are associated with two components in 
the definition: (a) it depends upon a prescription for a 

* The term 'precision' is used to note the level of reproducibility 
achieved by repeated measurement using one technique. The term 
'accuracy' refers to the degree of approximation to the absolute 
value. The distinction between 'precision' and 'accuracy' used here 
has similarities to the distinction between the criterion of internal 
consistency and the criterion of external consistency introduced 
by Birge (1932). 
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crystalline state - the 'ideally imperfect' or 'mosaic '  
crystal; and (b) it implies the measurement of finite 
diffracted intensity. In respect of measurement of  
intensity, what the definition by Bragg, Darwin & 
James specified was a maximum integrated reflectivity 
which was to be sought as representing the 'upper limit' 
corresponding to the 'ideally imperfect' crystal. No 
clear-cut operational guide was offered, either in 1926 
or subsequently, as an identifier of when the true 
maximum had been attained or how close one could 
come to its attainment in practice. So, even from the 
earliest quantitative measurements of diffracted 
intensity, all experimental estimates of structure-factor 
values have been bedevilled by this uncertainty as to 
how much they fell short of  the 's tandard '  of ideal 
imperfection. Indeed, it is clear that it was this very 
uncertainty that led to the introduction of the 
traditional procedure of relying on theoretical estimates 
of structure-factor values (see Bragg, Darwin & James, 
1926, p. 909) and to continued reliance on this pro- 
cedure. 

The second component of the definition - which, 
from a cursory inspection, might appear to offer some 
guide as to how to proceed experimentally - was the 
nomination of an 'ideally imperfect' state. The difficulty 
in relation to this part of the definition is that a proper 
meaningful prescription for a reference physical state 
can present difficulties not necessarily evident in the 
wording. Thus it is paradoxical that the state of being 
'perfect' [which was used in relation to the 'lower limit' 
by Bragg, Darwin & James, (1926)], so far as a 
crystal is concerned, can be defined fairly readily and 
is, for a few selected materials, almost attainable, 
whereas the state of being 'ideally imperfect' as a 
description of a real physical entity which would 
yield an intensity corresponding to the 'upper limit' is 
difficult or may be impossible to specify. Hart (1974) 
has put the point succinctly in the following: 'Whereas 
the mathematical  description (either) of a perfect 
crystal (or a liquid or a gas) is recognizable in its time- 
averaged structure, the mathematical  prescription for 
an ideally imperfect crystal is not recognizable in its 
structure. In fact, the usual prescription is internally 
inconsistent'. It is evident that, as a consequence of the 
unphysical nature of the term 'ideally imperfect', this 
component also does not provide an operational guide 
as to how to attain the 'upper limit'. 

By contrast, starting from a definition of freedom 
from extinction based on level of interaction, our 
prescription for the kinematical limit is an operational 
one, i.e. it can be converted into experimental pro- 
cedures so that experiment and theory are consistent 
and compatible at the limit of zero level of interaction, 
a limit which is identified in a practical sense by 
attaining zero diffracted power. 

The substitution of the original definition of the 
'upper limit' by our prescription for the 'kinematical 

limit' based on level of  interaction and only attainable 
by extrapolation makes it clear that the specification 
of the physical state of the crystal medium in respect 
of this latter limit is, in fact, an unnecessary qualifica- 
tion. A prescription which is dependent only on level of 
interaction at the zero limit is applicable to the whole 
range of real crystals from near ideally perfect to 
powders (see Hirsch & Ramachandran,  1950; 
Mathieson, 1977b; Wilkins, 1978). In this sense, it is a 
universal limit. 

It may be instructive to use a heuristic device, 
Fig. 4, to illustrate the trend of level of interaction 
to zero for a range of crystal states. The level of 
interaction, which we have been discussing in general 
terms, may be equated, for example, with g-1 where 
g is as given in equation (2) of Hirsch & Ramachan-  
dran (1950), and is dependent on such variables as 
asymmetry and polarization factor, which can be 
varied to change the level of interaction and so allow 

,•0 ~ smgle 

powdered re la t ive ly  dis cr et e~- - . - .~ . .~  
spec,men cont,nuous f ~ . ~  d ,-s'tri'l~u i'~o n 

/ 0  . ~ I d=str=bui=on" " " " h = a h ~ ' -  ~ "  

~ v  / populot,o~ ,c 

.:y. 

~'t lOt'/ /eve/ " ~ r  fJk 

Fig. 4. A schematic representation of the relationship of normalized 
intensity po,/pk, against the level of interaction for various levels 
of imperfection/perfection between the nominal limits of 'ideally 
imperfect' and 'ideally perfect'. The level of interaction is 
parameterized, here as g-~, where g is as given in equation (2) 
of Hirsch & Ramachandran (1950). The state of the crystal 
specimens is represented by various vertical sections: A is that 
of a powder specimen and E is that of a nearly perfect 
specimen. B, C and D correspond to single-crystal specimens 
of different characteristic population distributions of crystallite 
size and misorientation spanning the region between A and E. 
Surface Opqr corresponds to the equivalent level of interaction 
for the various specimens (say) for a given value of a structure 
factor. The actual shape of surface Opqr is not definitive but 
indicates the general trend. The intensity measure for each 
specimen is not represented as single-valued but has a spread 
which recognizes the more realistic specimen-specific situation 
associated with variation of beam paths and intercepted 
crystallite population. As the level of interaction tends to zero, so 
the normalized intensity for all specimens and for all different 
paths tends to the universal kinematical limit. 
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extrapolation to the required level of zero interaction. 
In operational terms, the level of interaction for a 
specific crystal and a particular reflexion H at a 
setting angle o) can be judged, e.g. by the reflectivity 
ratio, PH(o))/Po, where P0 is the incident power and 
Pz(o)) the diffracted power. Reference to the reflectivity 
allows a more general definition, independent of a 
specific experimental procedure (see Wilkins, 1978). 
Each specimen type, with a particular degree of crystal 
perfection, is represented by a vertical section in Fig. 4. 
Instead of simple integrated intensity as vertical 
coordinate, Po/Pk is used where Po is the measured, 
i.e. extinguished, intensity and Pk the corresponding 
theoretical kinematical intensity. Note that the 
extinction-free situation is when Po/Pk = 1.0. In this 
diagram, the non-uniqueness of the value for each 
specimen state, A to E, is indicated by the vertical 
spread which is associated with different potentially 
possible beam paths in the specimen (see Lawrence 
& Mathieson, 1977). 

In the surface, Opqr*, the spread of values narrows 
as one tends towards the extremes of the physical state 
of the specimen, namely powdered and monolithic. This 
is in accord with the practical observation that values 
of structure factors derived from such specimens tend 
to fall within a more restricted range than those 
derived from imperfect single crystals such as B, C, 
or D. It is also indicated by section ,4 that for any 
real powdered specimen the measurement of finite 
diffracted intensity will not coincide exactly with the 
zero-extinction limit. 

As the level of interaction is reduced, the normalized 
intensity increases for all specimens, ,4 to E; further, 
the spread of values for each specimen contracts, so 
that all measurements tend towards the same limit. In 
this limit, the normalized intensity is equal to unity, and 
is a universal limit, independent of the state of the 
crystal. 

Conclusion 

The approach to extinction outlined in this paper 
necessarily influences one's attitudes towards experi- 
mental intensity-measurement procedures for the 
derivation of structure factors. It shows how the usual 
one-off measurement procedure must ultimately rely, 
via theoretical estimates of extinction correction 
factors, on simplified parameterization to mimic the 
variation of extinction effect across the scan of the 
reflexion. By contrast, we here stress the need for 
extrapolation under controlled variation of some 
chosen physical variable if one is to avoid being 

* The surface, Opqr, which represents the functional relations, 
for different crystalline states for (say) a given value of structure 
factor, is not exactly defined in shape. That depicted here is 
simply to illustrate the trend with change of crystalline state. 

influenced by such theoretical estimates. Extrapolation 
with control has an additional advantage in that it 
allows for the capability of internal experimental checks 
without reference to any theoretical estimates. It can 
therefore arrive at some proper estimate of experi- 
mental accuracy and not merely of experimental 
precision. 

One message which is very clearly spelled out by this 
approach is that accuracy can only be gained by care 
in the design of an experiment and care in implementing 
it. As one tends towards the zero level of interaction, 
the reflectivity decreases so that one must increase the 
time of measurement to maintain the same level of 
statistical precision. This makes it very obvious that 
one must trade time for accuracy, a feature which is 
basic to the derivation of accurate structure factors 
whether from measurement of intensity or of fringe 
separation (see Aldred & Hart, 1973). For measure- 
ments of the former type (e.g. Mathieson, 1977a) a 
source of high intensity, such as that afforded by a 
synchroton, is clearly advantageous. 

The proper resolution of the problem of extinction 
has considerable bearing on the accuracy, and hence 
on the physical reality, of electron density distributions 
from intensity measurements, particularly as attention 
is directed towards higher acuracy (say) of the order 
of 1 to 0.1% and better. It is in relation to this level 
of accuracy (see Introduction) that the approach to 
extinction outlined in this paper is of relevance. It offers 
neither an easy solution nor a numerical substitute for 
reality. It refocuses attention on the vital importance 
of experiment, an aspect of the study of extinction 
which has been very much overshadowed by enthu- 
siasm for the conventional theoretical approach. 

I am most grateful to Drs J. L. Lawrence and S. L. 
Mair and particularly to Drs J. K. Mackenzie and 
S. W. Wilkins for both critical and constructive 
comments on this paper. I am grateful also to the 
referee for his reaction to the original manuscript which 
led to its being considerably reshaped and, in particular, 
for his detecting a defect in the original Fig. 4. 
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Abstract 

The weighted least-squares method cannot correctly be 
used when measurements have errors given by counting 
statistics. The usual procedure results in bias in the 
values and errors in the calculated variances of the 
parameters. The maximum-likelihood method requires 
only a minor change in the least-squares equations and 
is generally thought to have more desirable properties 
for its estimates. 
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Introduction 

Suppose a functional relationship exists between two 
measurable quantities Y0 and x given by 

yo=f(Oo,x) ,  (1) 

where the 00 are the true, but unknown, parameters, 
and suppose we have a list of measurements y(x )  of 
Yo(X) at various values of the independent variable x. 
We assume the x ' s  to be measured precisely but the y's 
to be imprecise. 

Y =  Yo + e,~ (2) 

5" Vector and matrix notation used throughout. 
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